Skip to main content

Big O(n^2) Ascending Sort

Nov 18, 2022AustinLeath
Loading...

More C++ Posts

Command line game

Nov 19, 2022CodeCatch

0 likes • 1 view

#include <iostream>
#include <vector>
#include <utility>
#include <algorithm>
#include <chrono>
using namespace std;
#include <stdio.h>
#include <Windows.h>
int nScreenWidth = 120; // Console Screen Size X (columns)
int nScreenHeight = 40; // Console Screen Size Y (rows)
int nMapWidth = 16; // World Dimensions
int nMapHeight = 16;
float fPlayerX = 14.7f; // Player Start Position
float fPlayerY = 5.09f;
float fPlayerA = 0.0f; // Player Start Rotation
float fFOV = 3.14159f / 4.0f; // Field of View
float fDepth = 16.0f; // Maximum rendering distance
float fSpeed = 5.0f; // Walking Speed
int main()
{
// Create Screen Buffer
wchar_t *screen = new wchar_t[nScreenWidth*nScreenHeight];
HANDLE hConsole = CreateConsoleScreenBuffer(GENERIC_READ | GENERIC_WRITE, 0, NULL, CONSOLE_TEXTMODE_BUFFER, NULL);
SetConsoleActiveScreenBuffer(hConsole);
DWORD dwBytesWritten = 0;
// Create Map of world space # = wall block, . = space
wstring map;
map += L"#########.......";
map += L"#...............";
map += L"#.......########";
map += L"#..............#";
map += L"#......##......#";
map += L"#......##......#";
map += L"#..............#";
map += L"###............#";
map += L"##.............#";
map += L"#......####..###";
map += L"#......#.......#";
map += L"#......#.......#";
map += L"#..............#";
map += L"#......#########";
map += L"#..............#";
map += L"################";
auto tp1 = chrono::system_clock::now();
auto tp2 = chrono::system_clock::now();
while (1)
{
// We'll need time differential per frame to calculate modification
// to movement speeds, to ensure consistant movement, as ray-tracing
// is non-deterministic
tp2 = chrono::system_clock::now();
chrono::duration<float> elapsedTime = tp2 - tp1;
tp1 = tp2;
float fElapsedTime = elapsedTime.count();
// Handle CCW Rotation
if (GetAsyncKeyState((unsigned short)'A') & 0x8000)
fPlayerA -= (fSpeed * 0.75f) * fElapsedTime;
// Handle CW Rotation
if (GetAsyncKeyState((unsigned short)'D') & 0x8000)
fPlayerA += (fSpeed * 0.75f) * fElapsedTime;
// Handle Forwards movement & collision
if (GetAsyncKeyState((unsigned short)'W') & 0x8000)
{
fPlayerX += sinf(fPlayerA) * fSpeed * fElapsedTime;;
fPlayerY += cosf(fPlayerA) * fSpeed * fElapsedTime;;
if (map.c_str()[(int)fPlayerX * nMapWidth + (int)fPlayerY] == '#')
{
fPlayerX -= sinf(fPlayerA) * fSpeed * fElapsedTime;;
fPlayerY -= cosf(fPlayerA) * fSpeed * fElapsedTime;;
}
}
// Handle backwards movement & collision
if (GetAsyncKeyState((unsigned short)'S') & 0x8000)
{
fPlayerX -= sinf(fPlayerA) * fSpeed * fElapsedTime;;
fPlayerY -= cosf(fPlayerA) * fSpeed * fElapsedTime;;
if (map.c_str()[(int)fPlayerX * nMapWidth + (int)fPlayerY] == '#')
{
fPlayerX += sinf(fPlayerA) * fSpeed * fElapsedTime;;
fPlayerY += cosf(fPlayerA) * fSpeed * fElapsedTime;;
}
}
for (int x = 0; x < nScreenWidth; x++)
{
// For each column, calculate the projected ray angle into world space
float fRayAngle = (fPlayerA - fFOV/2.0f) + ((float)x / (float)nScreenWidth) * fFOV;
// Find distance to wall
float fStepSize = 0.1f; // Increment size for ray casting, decrease to increase
float fDistanceToWall = 0.0f; // resolution
bool bHitWall = false; // Set when ray hits wall block
bool bBoundary = false; // Set when ray hits boundary between two wall blocks
float fEyeX = sinf(fRayAngle); // Unit vector for ray in player space
float fEyeY = cosf(fRayAngle);
// Incrementally cast ray from player, along ray angle, testing for
// intersection with a block
while (!bHitWall && fDistanceToWall < fDepth)
{
fDistanceToWall += fStepSize;
int nTestX = (int)(fPlayerX + fEyeX * fDistanceToWall);
int nTestY = (int)(fPlayerY + fEyeY * fDistanceToWall);
// Test if ray is out of bounds
if (nTestX < 0 || nTestX >= nMapWidth || nTestY < 0 || nTestY >= nMapHeight)
{
bHitWall = true; // Just set distance to maximum depth
fDistanceToWall = fDepth;
}
else
{
// Ray is inbounds so test to see if the ray cell is a wall block
if (map.c_str()[nTestX * nMapWidth + nTestY] == '#')
{
// Ray has hit wall
bHitWall = true;
// To highlight tile boundaries, cast a ray from each corner
// of the tile, to the player. The more coincident this ray
// is to the rendering ray, the closer we are to a tile
// boundary, which we'll shade to add detail to the walls
vector<pair<float, float>> p;
// Test each corner of hit tile, storing the distance from
// the player, and the calculated dot product of the two rays
for (int tx = 0; tx < 2; tx++)
for (int ty = 0; ty < 2; ty++)
{
// Angle of corner to eye
float vy = (float)nTestY + ty - fPlayerY;
float vx = (float)nTestX + tx - fPlayerX;
float d = sqrt(vx*vx + vy*vy);
float dot = (fEyeX * vx / d) + (fEyeY * vy / d);
p.push_back(make_pair(d, dot));
}
// Sort Pairs from closest to farthest
sort(p.begin(), p.end(), [](const pair<float, float> &left, const pair<float, float> &right) {return left.first < right.first; });
// First two/three are closest (we will never see all four)
float fBound = 0.01;
if (acos(p.at(0).second) < fBound) bBoundary = true;
if (acos(p.at(1).second) < fBound) bBoundary = true;
if (acos(p.at(2).second) < fBound) bBoundary = true;
}
}
}
// Calculate distance to ceiling and floor
int nCeiling = (float)(nScreenHeight/2.0) - nScreenHeight / ((float)fDistanceToWall);
int nFloor = nScreenHeight - nCeiling;
// Shader walls based on distance
short nShade = ' ';
if (fDistanceToWall <= fDepth / 4.0f) nShade = 0x2588; // Very close
else if (fDistanceToWall < fDepth / 3.0f) nShade = 0x2593;
else if (fDistanceToWall < fDepth / 2.0f) nShade = 0x2592;
else if (fDistanceToWall < fDepth) nShade = 0x2591;
else nShade = ' '; // Too far away
if (bBoundary) nShade = ' '; // Black it out
for (int y = 0; y < nScreenHeight; y++)
{
// Each Row
if(y <= nCeiling)
screen[y*nScreenWidth + x] = ' ';
else if(y > nCeiling && y <= nFloor)
screen[y*nScreenWidth + x] = nShade;
else // Floor
{
// Shade floor based on distance
float b = 1.0f - (((float)y -nScreenHeight/2.0f) / ((float)nScreenHeight / 2.0f));
if (b < 0.25) nShade = '#';
else if (b < 0.5) nShade = 'x';
else if (b < 0.75) nShade = '.';
else if (b < 0.9) nShade = '-';
else nShade = ' ';
screen[y*nScreenWidth + x] = nShade;
}
}
}
// Display Stats
swprintf_s(screen, 40, L"X=%3.2f, Y=%3.2f, A=%3.2f FPS=%3.2f ", fPlayerX, fPlayerY, fPlayerA, 1.0f/fElapsedTime);
// Display Map
for (int nx = 0; nx < nMapWidth; nx++)
for (int ny = 0; ny < nMapWidth; ny++)
{
screen[(ny+1)*nScreenWidth + nx] = map[ny * nMapWidth + nx];
}
screen[((int)fPlayerX+1) * nScreenWidth + (int)fPlayerY] = 'P';
// Display Frame
screen[nScreenWidth * nScreenHeight - 1] = '\0';
WriteConsoleOutputCharacter(hConsole, screen, nScreenWidth * nScreenHeight, { 0,0 }, &dwBytesWritten);
}
return 0;
}

SAM 5 words with bitmaps

Oct 23, 2022LeifMessinger

0 likes • 1 view

//Leif Messinger
//Finds all sets of 5 5 letter words that don't have duplicate letters in either themselves or each other.
//First it reads the words in and puts them in groups of their bitmasks
//After that, we recurse on each group. Before doing that, we remove the group from the set of other groups to check it against.
#include <cstdio> //getchar, printf
#include <cassert> //assert
#include <vector>
#include <set>
#include <algorithm> //std::copy_if
#include <iterator> //std::back_inserter
#define CHECK_FOR_CRLF true
#define MIN_WORDS 5
#define MAX_WORDS 5
#define WORD_TOO_LONG(len) (len != 5)
const unsigned int charToBitmask(const char bruh){
assert(bruh >= 'a' && bruh <= 'z');
return (1 << (bruh - 'a'));
}
void printBitmask(unsigned int bitmask){
char start = 'a';
while(bitmask != 0){
if(bitmask & 1){
putchar(start);
}
bitmask >>= 1;
++start;
}
}
//Pointer needs to be deleted
const std::set<unsigned int>* getBitmasks(){
std::set<unsigned int>* bitmasksPointer = new std::set<unsigned int>;
std::set<unsigned int>& bitmasks = (*bitmasksPointer);
unsigned int bitmask = 0;
unsigned int wordLength = 0;
bool duplicateLetters = false;
for(char c = getchar(); c >= 0; c = getchar()){
if(CHECK_FOR_CRLF && c == '\r'){
continue;
}
if(c == '\n'){
if(!(WORD_TOO_LONG(wordLength) || duplicateLetters)) bitmasks.insert(bitmask);
bitmask = 0;
wordLength = 0;
duplicateLetters = false;
continue;
}
if((bitmask & charToBitmask(c)) != 0) duplicateLetters = true;
bitmask |= charToBitmask(c);
++wordLength;
}
return bitmasksPointer;
}
void printBitmasks(const std::vector<unsigned int>& bitmasks){
for(unsigned int bruh : bitmasks){
printBitmask(bruh);
putchar(','); putchar(' ');
}
puts("");
}
//Just to be clear, when I mean "word", I mean a group of words with the same letters.
void recurse(std::vector<unsigned int>& oldBitmasks, std::vector<unsigned int> history, const unsigned int currentBitmask){
//If there's not enough words left
if(oldBitmasks.size() + (-(history.size())) + (-MIN_WORDS) <= 0){
//If there's enough words
if(history.size() >= MIN_WORDS){
//Print the list
printBitmasks(history);
}
return;
//To make it faster, we can stop it after 5 words too
}else if(history.size() >= MAX_WORDS){
//Print the list
printBitmasks(history);
return;
}
//Thin out the array with only stuff that matches the currentBitmask.
std::vector<unsigned int> newBitmasks;
std::copy_if(oldBitmasks.begin(), oldBitmasks.end(), std::back_inserter(newBitmasks), [&currentBitmask](unsigned int bruh){
return (bruh & currentBitmask) == 0;
});
while(newBitmasks.size() > 0){
//I know this modifies 'oldBitmasks' too. It's intentional.
//This makes it so that the word is never involved in any of the child serches or any of the later searches in this while loop.
const unsigned int word = newBitmasks.back(); newBitmasks.pop_back();
std::vector<unsigned int> newHistory = history;
newHistory.push_back(word);
recurse(newBitmasks, newHistory, currentBitmask | word);
}
}
int main(){
const std::set<unsigned int>* bitmasksSet = getBitmasks();
std::vector<unsigned int> bitmasks(bitmasksSet->begin(), bitmasksSet->end());
delete bitmasksSet;
recurse(bitmasks, std::vector<unsigned int>(), 0);
return 0;
}

Hello, World!

Nov 18, 2022AustinLeath

0 likes • 3 views

#include <iostream>
using namespace std;
int main()
{
cout << "Hello, World!" << endl;
return 0;
}

PlaylistNode.cpp (lab 9)

Nov 18, 2022AustinLeath

0 likes • 0 views

#include <string>
#include <iostream>
#include "PlaylistNode.h"
using namespace std;
PlaylistNode::PlaylistNode() {
uniqueID = "none";
songName = "none";
artistName = "none";
songLength = 0;
nextNodePtr = 0;
}
PlaylistNode::PlaylistNode(string uniqueID_, string songName_, string artistName_, int songLength_) {
uniqueID = uniqueID_;
songName = songName_;
artistName = artistName_;
songLength = songLength_;
nextNodePtr = 0;
}
void PlaylistNode::InsertAfter(PlaylistNode* ptr) {
this->SetNext(ptr->GetNext());
ptr->SetNext(this);
}
void PlaylistNode::SetNext(PlaylistNode* ptr) {
nextNodePtr = ptr;
}
string PlaylistNode::GetID() {
return uniqueID;
}
string PlaylistNode::GetSongName() {
return songName;
}
string PlaylistNode::GetArtistName() {
return artistName;
}
int PlaylistNode::GetSongLength() {
return songLength;
}
PlaylistNode* PlaylistNode::GetNext() {
return nextNodePtr;
}
void PlaylistNode::PrintPlaylistNode() {
cout << "Unique ID: " << uniqueID << endl;
cout << "Song Name: " << songName << endl;
cout << "Artist Name: " << artistName << endl;
cout << "Song Length (in seconds): " << songLength << endl;
}
Playlist::Playlist() {
head = tail = 0;
}
void Playlist::AddSong(string id, string songname, string artistname, int length) {
PlaylistNode* n = new PlaylistNode(id, songname, artistname, length);
if (head == 0) {
head = tail = n;
}
else {
n->InsertAfter(tail);
tail = n;
}
}
bool Playlist::RemoveSong(string id) {
if (head == NULL) {
cout << "Playlist is empty" << endl;
return false;
}
PlaylistNode* curr = head;
PlaylistNode* prev = NULL;
while (curr != NULL) {
if (curr->GetID() == id) {
break;
}
prev = curr;
curr = curr->GetNext();
}
if (curr == NULL) {
cout << "\"" << curr->GetSongName() << "\" is not found" << endl;
return false;
}
else {
if (prev != NULL) {
prev ->SetNext(curr->GetNext());
}
else {
head = curr->GetNext();
}
if (tail == curr) {
tail = prev;
}
cout << "\"" << curr->GetSongName() << "\" removed." << endl;
delete curr;
return true;
}
}
bool Playlist::ChangePosition(int oldPos, int newPos) {
if (head == NULL) {
cout << "Playlist is empty" << endl;
return false;
}
PlaylistNode* prev = NULL;
PlaylistNode* curr = head;
int pos;
if (head == NULL || head == tail) {
return false;
}
for (pos = 1; curr != NULL && pos < oldPos; pos++) {
prev = curr;
curr = curr->GetNext();
}
if (curr != NULL) {
string currentSong = curr->GetSongName();
if (prev == NULL) {
head = curr->GetNext();
}
else {
prev->SetNext(curr->GetNext());
}
if (curr == tail) {
tail = prev;
}
PlaylistNode* curr1 = curr;
prev = NULL;
curr = head;
for (pos = 1; curr != NULL && pos < newPos; pos++) {
prev = curr;
curr = curr->GetNext();
}
if (prev == NULL) {
curr1->SetNext(head);
head = curr1;
}
else {
curr1->InsertAfter(prev);
}
if (curr == NULL) {
tail = curr1;
}
cout << "\"" << currentSong << "\" moved to position " << newPos << endl;
return true;
}
else {
cout << "Song's current position is invalid" << endl;
return false;
}
}
void Playlist::SongsByArtist(string artist) {
if (head == NULL) {
cout << "Playlist is empty" << endl;
}
else {
PlaylistNode* curr = head;
int i = 1;
while (curr != NULL) {
if (curr->GetArtistName() == artist) {
cout << endl << i << "." << endl;
curr->PrintPlaylistNode();
}
curr = curr->GetNext();
i++;
}
}
}
int Playlist::TotalTime() {
int total = 0;
PlaylistNode* curr = head;
while (curr != NULL) {
total += curr->GetSongLength();
curr = curr->GetNext();
}
return total;
}
void Playlist::PrintList() {
if (head == NULL) {
cout << "Playlist is empty" << endl;
}
else {
PlaylistNode* curr = head;
int i = 1;
while (curr != NULL) {
cout << endl << i++ << "." << endl;
curr->PrintPlaylistNode();
curr = curr->GetNext();
}
}
}

Daily: Cutting a Wall

Dec 20, 2021aedrarian

0 likes • 0 views

/*
Good morning! Here's your coding interview problem for today.
This problem was asked by LinkedIn.
A wall consists of several rows of bricks of various integer lengths and uniform height. Your goal is to find a vertical line going from the top to the bottom of the wall that cuts through the fewest number of bricks. If the line goes through the edge between two bricks, this does not count as a cut.
For example, suppose the input is as follows, where values in each row represent the lengths of bricks in that row:
[[3, 5, 1, 1],
[2, 3, 3, 2],
[5, 5],
[4, 4, 2],
[1, 3, 3, 3],
[1, 1, 6, 1, 1]]
The best we can we do here is to draw a line after the eighth brick, which will only require cutting through the bricks in the third and fifth row.
Given an input consisting of brick lengths for each row such as the one above, return the fewest number of bricks that must be cut to create a vertical line.
AUTHORS NOTE:
Makes following assumptions:
- Each row is same length
- Data is in file called "data.dat" and formatted in space-separated rows
- The cuts at the beginning and end of the wall are not solutions
This requires the following file named data.dat that is a space separated file, or similar formatted file:
----START FILE----
3 5 1 1
2 3 3 2
5 5
4 4 2
1 3 3 3
1 1 6 1 1
----END FILE----
*/
#include <algorithm>
#include <iostream>
#include <fstream>
#include <map>
#include <sstream>
#include <string>
#include <vector>
using namespace std;
int main()
{
vector<vector<int>> wall;
ifstream in;
in.open("data.dat");
if(!in.good())
{
cout << "ERROR: File failed to open properly.\n";
}
/* Get input from space separated file */
string line;
while(!in.eof())
{
getline(in, line);
int i;
vector<int> currv;
stringstream strs(line);
while(strs >> i)
currv.push_back(i);
wall.push_back(currv);
}
/* Convert each value from "length of brick" to "position at end of brick" */
for(int y = 0; y < wall.size(); y++)
{
wall.at(y).pop_back(); //Delet last val
for(int x = 1; x < wall.at(y).size(); x++) //Skip the first bc data doesn't need change
wall.at(y).at(x) += wall.at(y).at(x-1);
}
/* Check output. COMMENT OUT */
// for(auto row : wall)
// {
// for(int pos : row)
// cout << pos << " ";
// cout << endl;
// }
/* Determine which ending position is most common, and cut there */
//Exclude final position, which will be the size of the wall
int mode = -1;
int amt = -1;
vector<int> tried;
for(auto row : wall)
{
for(int pos : row) //For each pos in the wall
{
//Guard. If pos is contained in the list, skip pos
if(find(tried.begin(), tried.end(), pos) != tried.end())
continue;
tried.push_back(pos);
/* Cycle through each row to see if it contains the pos */
int curramt = 0;
for(auto currrow : wall)
{
if( find( currrow.begin(), currrow.end(), pos ) != currrow.end() )
curramt++;
}
//cout << pos << " " << curramt << endl;
if(curramt > amt)
{
amt = curramt;
mode = pos;
}
}
}
cout << "Please cut at position " << mode << endl;
cout << "This will cut through " << (wall.size() - amt) << " bricks." << endl;
return 0;
}

Enumeration Basics

Nov 18, 2022AustinLeath

0 likes • 10 views

#include <iostream>
using namespace std;
/*
Description: uses switch case statements to determine whether it is hot or not outside.
Also uses toupper() function which forces user input char to be uppercase in order to work for the switch statement
*/
int main() {
char choice;
cout << "S = Summer, F = Fall, W = Winter, P = Spring" << endl;
cout << "Enter a character to represent a season: ";asdasdasdasd
cin >> choice;
enum Season {SUMMER='S', FALL='F', WINTER='W', SPRING='P'};
switch(toupper(choice)) // This switch statement compares a character entered with values stored inside of an enum
{
case SUMMER:
cout << "It's very hot outside." << endl;
break;
case FALL:
cout << "It's great weather outside." << endl;
break;
case WINTER:
cout << "It's fairly cold outside." << endl;
break;
case SPRING:
cout << "It's rather warm outside." << endl;
break;
default:
cout << "Wrong choice" << endl;
break;
}
return 0;
}